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ABSTRACT - REZUMAT

Detection of garment manufacturing defects using CFPNet and deep belief network: an image-based
approach

The demand for high-quality items and the quickly shifting economic landscape increase the importance of ready-made
garment manufacturers in providing the correct quality product. It is difficult work in the textile industry since the efficacy
and efficiency of automatic flaw identification determine the quality and cost of every textile surface. In the past, the
textile industry used manual human efforts to find flaws in the manufacturing of clothing. The main downsides of the
manual garment fault identification technique include lack of concentration, human tiredness, and time requirements.
Applications based on digital image processing and computer vision can overcome the aforementioned restrictions and
shortcomings. In this article, we use intelligent algorithms like Channel-wise Feature Pyramid Network (CFPNet) based
on deep learning-based techniques with Deep Belief Network (DBN) to monitor the quality and predict any occurrences
of manufacturing problems in clothing. The suggested algorithm is mostly utilised in the textile industry to find flaws in
clothing while estimating client needs based on the environment and the economy to react quickly and meet business
objectives. The performance evaluation was used to determine the 12 kinds of garment faults, which included holes,
excessive margins, stains, cracks, inappropriate stitch balancing, needle breaks, ink stains, torn clothing, drop stitches,
soil content, and broken clothing. The suggested model obtains a 95.85% stain defect detection rate, a 97.33%
defect-free garment recognition rate, and a 97.16% hole defect recognition rate.

Keywords: garment industry, quality assurance, prediction classification parameter optimisation, digital image
processing, deep belief network

Detectarea defectelor de fabricatie a articolelor de imbracaminte utilizind CFPNet si reteaua ,,Deep belief
network”: o abordare bazata pe imagini

Nevoia producétorilor de articole de imbracaminte de a oferi un produs de calitate corespunzatoare este sporita de
cererea de articole de inaltd calitate si de peisajul economic in schimbare rapidd. Este o munca dificila in industria
textild, deoarece eficacitatea si eficienta identificarii automate a defectelor determind calitatea si costul fiecarei suprafete
textile. In trecut, industria textild folosea eforturile umane manuale pentru a gasi defecte in fabricarea imbracdmintei.
Principalele dezavantaje ale tehnicii de identificare manuala a defectelor de imbracaminte includ lipsa de concentrare,
oboseala umané si cerintele de timp. Aplicatiile bazate pe procesarea digitald a imaginilor si viziunea computerizata pot
depdsi restrictiile si neajunsurile mentionate mai sus. In acest articol, au fost utilizati algoritmi inteligenti precum
Channel-wise Feature Pyramid Network (CFPNet) bazati pe tehnici de invétare profunda cu Deep Belief Network (DBN)
pentru a monitoriza calitatea si a preconiza orice problema de fabricatie a imbracamintei. Algoritmul sugerat este utilizat
in cea mai mare parte in industria textila pentru a gasi defecte in imbracéminte, in timp ce estimeazéa nevoile clientilor
pe baza mediului si a economiei pentru a reactiona rapid si a indeplini obiectivele de afaceri. Evaluarea performantei a
fost utilizata pentru a determina cele 12 tipuri de defecte ale articolelor de imbracaminte, care au inclus gauri, margini
excesive, pete, fisuri, echilibrare necorespunzatoare a cusaturilor, rupturi de ac, pete de cerneala, cusaturi desprinse,
continut de murdarie si imbracaminte rupta. Modelul sugerat a obtinut o raté de detectie a defectelor de 95,85%, o rata
de recunoastere a articolelor de imbrdcaminte faré defecte de 97,33% si o ratd de recunoastere a defectelor de gauri
de 97,16%.

Cuvinte-cheie: industria de imbracdminte, asigurarea calitatii, optimizarea parametrilor de clasificare a predictiilor,
procesarea digitald a imaginilor, ,Deep belief network”

INTRODUCTION

Manufacturers must offer their clients high-quality but
affordable items if they want to increase their com-
petitive advantage and survive in today’s aggressive
market. This has a significant effect on quality control
procedures. Human inspection has always been
used to detect clothing flaws; however, this method
hides the link between production process variables
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and product quality [1]. It is difficult to perform effec-
tive product assurance without any information dis-
covery from the production processes at a parameter
level. It is critical to identify defects in the clothes pro-
duction process as early as possible to provide
clients with high-quality garments at competitive
costs. In these conditions, having a system in place
that can identify the points where these flaws occur,
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how frequently they occur, what causes them, and

what fixes are available will help the workers produce

high-quality clothing. Moreover, this process will be

greatly impacted by machinery maintenance [2]. As a

result, there is a constant need in the textile sector for

data processing and the finding of worthwhile and
potentially useful knowledge from these data [3]. It is
an inevitable fact that certain events that may occur
during the production process can result in variations

in product quality [4].

The present Information technology (IT) solutions

have not enhanced Human Resources (HR) systems.

Even though HR systems were already in place, it

appears that no provision has been made for auto-

mated decision-making using modern IT trends. To
address manufacturing problems related to quality,
quality improvement (Ql) of industrial processes and
products is required [5]. Numerous textile investiga-
tions have used a variety of conventional mathemat-

ical and statistical methods to process textile data [6].

So, when a projected machinery component failure

occurs, users will be informed that the relevant

machine is in danger as a result. This work’s main
contributions are:

» To monitor the quality and predict any occurrences
of manufacturing defects in garments using
Channel-wise Feature Pyramid Network (CFPNet)
algorithms.

» To optimize the production, predicting the customer
requirements based on eco system and demand
forecasting to respond rapidly and meet business
demands using with Deep Belief Network (DBN).

» The following 12 default categories were chosen:
hole, excessive margin, ink stain, crack, stain,
ripped, drop stitch, broken end, defect-free, and
incorrect stitch balance.

* The proposed work achieves a high accuracy value
of 95.85%, and the BPN method provides a low
accuracy value of 83.33%.

The following sections of this article are arranged as
follows: A review of related prior research is present-
ed in the 2" section, each algorithm utilized in this
study is briefly described in the 3™ section, the results
and discussions are presented in the 4t section, and
the article is concluded in the 5™ section.

LITERATURE SURVEY

A technique utilizing the auto correlation function and
grey level co-occurrence matrix to detect fabric faults
in yarn-dyed fabrics [7]. The Fisher criterion-based
deep learning algorithm was chosen by the author [8]
for the detection of deformable patterned fabric
defects. This work is used to create simple, twill, peri-
odic patterns, and more intricate jacquard warp knit
fabrics. An automatic and effective fabric defect
detection methodology [9]. This technique was
specifically used to identify defects in woven fabrics.
A support vector machine classifier for an automated
fabric flaw detecting system [10]. Three steps make
up this work: threshold comparison, defect image
inspection, and calibration. The benefits of this work
include high accuracy and success rates with short
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processing times [11]. A multi-channel feature matrix
extraction and joint low rank decomposition-based
approach for fabric flaw detection. Wavelet transform
was developed [12] to discover fabric flaws to cut
production costs, waste, and time in the textile sector.
A defect inspection approach based on a back prop-
agation neural network in texture images was pro-
posed [13]. The neural network model of production
cycle time prediction is designed to increase forecast
accuracy and get a deeper understanding of the pro-
duction process in the garment manufacturing indus-
try [14]. A sewing defect detection method using
a CNN feature map extracted from the initial layers of
a pre-trained VGG-16 to detect a broken stitch from
a captured image of a sewing operation [15]. To
assess the effectiveness of the proposed method,
experiments were conducted on a set of sewing
images, including normal images, their synthetic
defects, and rotated images. A deep learning algo-
rithm on LSTM infers details about the textile using
digital images [16]. The LSTM technique is utilized to
identify the defects in the fabric. Even with complex
designs, the imperfections are visible. The predictive
power of alternative machine learning (ML) algo-
rithms in terms of real fit satisfaction (RFS) for cus-
tomers’ clothing fit and to compare the predictive
capacities of these algorithms [17]. As test items,
skirts composed of various textiles were utilized.
Previous techniques for finding clothing flaws could
never guarantee a 100% inspection rate. It is imper-
ative to address the massive dimensionality and
complexity of textile data. Certain textile studies may
involve complex interactions between several vari-
ables and aspects that are challenging to interpret
using conventional techniques. Owing to these serious
disadvantages, attempts are being made to automate
the process of detecting garment defects through the
use of a Channel-wise Feature Pyramid Network
(CFPNet), which is based on deep learning-based
techniques with a Deep Belief Network (DBN). This
will help to maintain ongoing garment quality mea-
surement and enhance the probability of the best
garments.

METHODOLOGIES

It's crucial to pinpoint the causes of variability in man-
ufacturing to reduce production errors and enhance
and sustain process performance. The primary factor
harming the textile industry is substandard clothing.
Two stages make up the automatic method for iden-
tifying clothing defects. Phases of detection or testing
and phases of learning or training. The system is
trained using photos of clothing that are free of flaws
during the learning phase. Following that, feature val-
ues that serve as classifier input are calculated. Only
the features of interest are taken into account during
the detecting phase. By dividing a test image into
smaller windows and calculating the necessary
statistics for each one, defects can be detected. If a
window’s required statistic set differs from the original
training texture, a problematic region is identified.
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Image acquisition

The initial database comes from a scan of the manu- Image
al on clothing defects. All typical types of flaws found Acquisition
in textile industries are included in the sample of gar-
ment photographs that were chosen in this manner. x Defwt
Twelve classes are covered by this algorithm: hairi- ngg Pt
. . . . = I~ CFPNet
ness, tiny hole, lumpy, horizontal stripes, lumpy, soil
stain, oil stain, double end, snarls, and miss. 100 Performance
photos total are included in each class; 20 are used evaluation

for teaching, and 80 are used for testing. For this
study, a total of 500 samples were utilized (figures 1
and 2).

Fig. 1. Proposed framework for garment defect detection
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Fig. 2. Input images of: a — defect-free image; b — image with soil stain defect; ¢ — defect-free image; d — image
with oil stain defect; e — oilstain; f — double end; g — snarls; h — miss; i — horizontal stripes, j — lumpy; k — hole;
| — dye spot; m — lumpy; n — horizontal stripes; o — fall out; p — hairiness; r-u — samples with tiny hole defects
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Images of garments typically have noise following the
scanning process. The clarity of the photos is impact-
ed by this noise, which also distorts the textures and
contours of the clothing. Common type of noise that
affects the garment images are impulse noise,
Gaussian noise and salt & pepper noise. It creates
difficulties for the further garments’ texture analysis
and retrieval process. If noise is present, there is a
chance for the misidentification of the noise as a
defect. It affects the accuracy of the detection pro-
cess. So, de-noising is one of the most important
steps in the garment inspection process and compu-
tation. Noise is removed in this instance using con-
trast-limited adaptive histogram equalization.
Channel-wise Feature Pyramid Network (CFPNet) is
for extracting defects, and finally, the DBN algorithm
is used for classification.

Contrast Limited Adaptive Histogram
Equalization (CLALE)

The local contrast of an image can be improved via
CLAHE (figure 3). It is an extension of histogram
equalisation using both traditional and adaptive algo-
rithms. Once the algorithm has divided each image
into contextual zones, histogram equalisation is
applied. This improves the visibility of the image’s
hidden information and evens out the distribution of
the used grey values. The complete greyscale serves
as the image. CLAHE is an improved version of AHE,
or Adaptive Histogram Equalization, which was
developed to address the shortcomings of conven-
tional histogram equalisation.

Instead of processing the entire image, the tradition-
al histogram, AHE method, only processes discrete
data portions. (tiles). Because the contrast of each tile
has been increased, the output region’s histogram

Fig. 3. CLAHE result of input images
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roughly resembles the necessary histogram. Next,
adjacent tiles are combined using bilinear interpola-
tion to remove artificially created boundaries.
Reducing the contrast will prevent the possible noise
in the image from increasing, particularly in areas of
homogeneity [16].

This algorithm’s temporal complexity is O(M x N x W2
+ n), where M x N represents the image’s entire pixel
count. The window size is W, and there are n bins.
The AHE algorithm’s temporal complexity rises with
window size. So, it is important to choose the window
size carefully. A small window lets in noise, whereas
a large window lets in artifacts.

CLAHE was introduced to address this AHE issue.
Contrast enhancement is the slope of the function
that relates the input intensity to the output.
According to the cumulative histogram equation 1
with histogram equalization, the mapping function
m(j) is proportional.

m(i) = (display range) = (cumulative histogram (i) /
region size (1)

Consequently, the derivative of m(i) is related to the

histogram(i). In CLAHE, the histogram is restricted,

which restricts contrast enhancement. Below is a list
of the CLAHE algorithm.

» Step 1: Acquire every input, such as the picture, the
number of regions in the histograms showing the
row and column directions, the number of bins for
the histograms showing the dynamic range (also
called the “dynamic range”), and the clip limit for
contrast limiting. Normalized between 0 and 1.

» Step 2: Process the inputs first: Pad the image
before region-based processing and, if needed,
extrapolate the real clip limit from the normalized
value.

» Step 3: By processing each contextual area (tile),
grey level mappings are created: Extract a single
region of the image using the number of bins that
are provided, use the clip limit to clip the histogram,
and then create a mapping (transformation func-
tion) for that region.

» Step 4: build the final CLAHE image by interpolat-
ing grey level mappings: Extraction of a group of
four nearby mapping functions, processing of the
portions of the image that partially encircle each
mapping tile, extracting a single pixel, connecting
four mappings to it, then breaking up the outcomes
to get the output pixel;

is to use the associations found to determine the
proper manufacturing process settings to improve
product quality.

Operating as the central nervous system of CFPNet,
the channel-wise feature pyramid (CFP) module is a
factorized convolution operator that splits a large ker-
nel into smaller convolutions. Inception-v2 substi-
tutes two 3 x 3 convolutional operators for the 5 x 5
size kernel that was employed in the original
Inception module. Create a module using factoriza-
tions and multi-scale feature maps to handle a kernel
size of up to 7 x 7. As with Inception-v2, swap out the
5 x 5 and 7 x 7 size kernels for two and three 3 x 3
convolution kernels, accordingly. Our real-time objec-
tives cannot yet be met with this technique’s size
because of the complex procedure for saving the
parameter up to 28% and 45%. To aggregate the
convolution kernels into a single channel, only use
the three 3 x 3 kernels. The Feature Pyramid (FP)
channel was then created by asymmetrically trans-
forming the conventional convolution [17]. Create a
multiscale feature map by utilizing a skip connection
to merge the recovered data from every asymmetric
convolution block. Even with the same receptive field
size, the FP channel can save an additional 67% of
parameters as compared to the implementation of
Inception-v2. Since every asymmetric convolution
block has concatenating properties, reorder the filter
numbers for each asymmetric block so that the input
and output have the same dimension. The first and
second blocks of the 3 x 3 and 5 x 5 convolutions,
respectively, should be assigned N/4 if the input
dimension is N. Pull out the large weighted significant
features from the 7 by 7 kernel of the third block
using N/2 filters.

Network architecture: To create a shallow network
with both light and effective properties, as shown in
figure 4. Table 1 also displays the architecture’s char-
acteristics. The initial feature extractor starts with
three 3 x 3 convolutions. Next, the same down sam-
pling method was used with the ENet [18] model,
which comprises a 2 x 2 max pooling, a stride 2 con-
volution, and a 3 x 3 convolution. The output dimen-
sions are one-eighth the size of the input after these
three downsampling repetitions. Before the first and
second max pooling layers and the final 1 x 1 convo-
lution, use skip connections to inject decreased input

repeat across the pic-

ture.

Channel-Wise Feature
Pyramid Network
(CFPNet)

The Channel-wise Feature
Pyramid Network (CFPNet)
was created to collect pro-
duction process parame-
ters and determine how
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they relate to the final
product’s quality. The goal
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images to provide the segmentation network addi-
tional information. Finally, pick the CFP module’s
repeat intervals of n = 2 and m = 6 using the dilation
rates rxcrp—1 = [2,2] and rkcrp—2 = [4,4,8,8,16,16]
for the CFP-1 and CFP-2 clusters, respectively.

The final feature map is activated using a 1 x 1 con-
volution after the segmentation masks are construct-

ed using a straightforward decoder and bilinear
interpolation. After each of those convolutions, the
PTeLU activation function and batch normalization
are performed. Because studies have already shown
that, in a shallow network, PTeLU outperforms TeLU.
Each feature contains or represents a key attribute or

Fig. 5. Results of the proposed method: a, ¢, e — input images with defects; b, d, f— detection results of input images



Table 1
ARCHITECTURE DETAILS OF CFPNet

No. Layer Mode Value
1 3 x 3conv Stride 2 32
2 3 x 3conv Stride 1 32
3 3 x 3conv Stride 1 32
4 Down sampling 64
5-6 2 x CFP rg=2 64
7 Down sampling 128
8-9 2 x CFP ry=4 128
10-11 2 x CFP rg==8 128
12-13 2 x CFP ry=16 128
14 3 x 3conv Stride 1 19
15 Bilinear interpolation x 8 19

set of characteristics from the source image. Hidden
neuron’s j, ki output in equation 2:

olp + 2o W), Zp—o @+ 1,k + m) (2)

where, ¢ — Neural activation function, p — Shared
bias value, W, m — Shared Weights (n x n array),
J, k= hidden neurons and a,, — Activation inputs at
X, Y.

The output of the convolutional layer is of size
(N-m+1)x (Nm+ 1), where the Nx N input neuron
layer is convoluted with a Mx M filter. Through the
neural activation function, non-linearity was imple-
mented. The analytic function represents a smooth
approximation to the rectifier.

In the convolutional layer, Nx N input neuron layer is
convoluted with Mx M filter, then the convolutional
layer output will be of size (N—m + 1) x (Nm + 1). It
applied non-linearity through neural activation func-
tion. A smooth approximation to the rectifier is the
analytic function in equation 3:

fix)=1In(1+¢X (3)

The sparsity in the hidden units is induced by this
activation function. It has also been shown that deep
neural networks can be trained more efficiently than
sigmoid and logistic regression activation functions.
Quality control is a crucial aspect of the textile busi-
ness. Traditional human inspection might result in
inaccurate findings, increased costs, and sluggish
production. As a result, several researchers
employed SVMs to identify flaws in clothing and fab-
ric (including yarn, woven fabric, knit fabric, and dye-
ing flaws) (i.e., cutting, sewing, and accessories
defects). Yet, it never yields a precise result. The
most popular kind of DBN is utilized in this study for
flaw identification and quality control.

Deep belief network

In increasingly complex setups, deep belief networks
can replace deep feed-forward networks or even
convolutional neural networks. They gain from having
far higher resistance to the vanishing gradients
problem and lower computational cost. Deep belief
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networks include significant restrictions on their
weight connections, making them significantly less
expressive than deep neural networks, which per-
form better on jobs for which sufficient input data is
available. Even in their prime, deep belief networks
were rarely directly applied. Instead, they were used
as a pretraining phase to define and train a deep
belief network that shared a similar deep neural net-
work’s general design. A suitable deep neural net-
work is then built using its weights, modified, and
then utilized. Sequentially connected, bounded
Boltzmann machines make up a deep belief network.
Every Boltzmann machine has an “output” layer that
is trained to convergence, frozen, and then used as
input by the machine in the chain following it. This
process continues until the entire network is trained
in equations 4 and 5 [19]:

el with 1= Bz, (1)
P=lo with 1 — Bnz, ()
o
Bnz,, (A) = 11 e (5)

where pte stands for the pseudo temperature param-
eter, which supports the probability’s noise level. A
representation of the stochastic system in equation 6:

. _ o 1 _
liMpte—0 BNZyp, (1) _ptlér_r]o T o e T
0 for A <0
={1/2 forr=0 (6)
1 forA>0

We modify the Boltzmann system depending on the
Boltzmann distribution to precisely mimic the input
patterns in equation 7.

The joint probability distribution is represented by the
energy function given by equation 8, which is derived
from the Gibbs distribution and computed using
equation 9, where h,, and x,, might have values in the
set [0,1], and & , p,, Bm, Vs are real valued weights.

maxe [T, x p(X) (7)
E(X’h) = Zfl;lﬂ Zfl\n/’=1 é’;n,m hnXm - Zl\ﬂ/’ﬂ Bme - er;I:1 Yn hn
(8)
1
xh)= ———— gEwn) 9
p(x.h) SR 9)

Deep networks are initially learned using unsuper-
vised learning, and then supervised learning is
applied to improve the model with tagged data. This
method nearly always outperforms networks learned
without pre-training since pre-training acts as a regu-
larizer and aid for the supervised optimisation prob-
lem. The greatest energy that results from tying the
network weights is equivalent to the energy found in
the directed model, and it is upper bounded by equa-
tion 11. For the directed model, one may estimate
this energy using equation 10. The derivative equals
in equation 12 at equality, which is utilized to resolve
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the maximization problem, which is now easier to
understand.

E(x°,h°% = — (log p(h?)) + (log p(*°/ po)) (10)
log p(h%) > Ty p("°[ xo)log p(°) + log p(X°[ po) —

— 2y Q(M°] xo)log Q(M°[ xo) (11)
Jl o
?E,.f:() = S p(h°[ xo)log p(h®)  (12)

Figure 6 shows the outcomes of categorization and
detection. When the proposed work is applied to the
garment photos that have problems, the quality is
improved, and the defects are accurately detected.

COMPARATIVE ANALYSIS

In this section, the suggested models are contrasted.
MATLAB 2018 is used to implement the proposed
task. Two CPUs and 14 GB of RAM and four CPUs
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Fig. 6. Results of classification
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Table 2

COMPARISON OF ENTROPY, CONTRAST AND EME VALUES WITH EXISTING METHODS
SI.No Algorithm Entropy Contrast E;e:;::nr:::;?‘:e
1 Gabor filter 6.991 0.773 52.38
2 Morphological filter 7.210 0.712 31.44
3 Histogram equalization 7.210 0.711 37.75
4 Adaptive Histogram equalization 6.181 0.771 47.52
5 Proposed 7.398 0.792 62.50

and 17 GB of RAM each were used in the computa-
tions on the Kaggle kernel. The comparison of the
proposed models is followed by the presentation of
the evaluations. By computing accuracy, precision,
recall, f1-score, quadratic weighted kappa indices,
detection rate, TPR, FPR, and confusion matrix, this
paper assessed the accuracy, sensitivity, specificity,
precision, recall, f1-score, and FPR applied to the
DBN methodology used in this instance.

By gathering data on entropy, contrast, effective
measure of enhancement, and average computing
time, the performance of the proposed task is
assessed. Table 2 summarizes performance metrics.
Entropy is attained at 7.398, contrast is at 0.792, and
EME is at 62.50 in the proposed work. When com-
pared to previous enhancement techniques, the pro-
posed work’s entropy is practically identical to that of
the original image. As a result, the original image’s
information content is kept more. Comparing this
work to previous enhancement techniques, the aver-
age entropy of the suggested work is more similar to
the input image.

The performance metrics are displayed in table 3.
The proposed work has better precision, sensitivity,
specificity, and accuracy than existing approaches,
according to a comparison with existing models.
When it comes to fabric inspection computation
costs, AlexNet — the most popular traditional method
— performs better than other conventional works. The
most recent developments, GAN and CNN, which are
commonly used detection methods, may identify and
highlight many kinds of flaws. Evaluations are con-
ducted in the same environment using real clothes
samples. This method effectively detects impacts in
garments because it applies convolutional layers in
both the horizontal and vertical orientations to extract

defect features. Since this model relies on the infor-
mation retrieved from the flaws and the spatial
domain approach, its sensitivity would not be satis-
fied when the defects’ contours are vague and con-
fused with the texture of regular clothing. This makes
it impossible for this model to correctly represent the
entire contour of the faults. Only fault types can be
accurately detected by the CFPNet detection model
with 97.3% accuracy.

Table 4 displays the suggested work’s classification
accuracy with other performance metrics. Scanned
photos from a fabric guide and photographs from the
classification data set were used. The following 12
default categories were chosen: hole, excessive mar-
gin, ink stain, crack, stain, ripped, drop stitch, broken
end, defect free, and incorrect stitch balance. Photos
of garments with holes and no imperfections are cat-
egorized more accurately than photos of other
defects.

Table 5 shows that the performance metric accuracy
is compared with the existing methods for defect-free
garment images. The proposed work achieves a high
accuracy value of 97.33%, and the image decompo-
sition method provides a low accuracy value of
83.3%. The table compares performance metric
accuracy with existing classifiers for the garments
image with hole defect. The proposed work achieves
a high accuracy value of 97.16%, and the artificial
neural network method provides a low accuracy
value of 82.33%. The comparison of performance
metric accuracy with existing classifiers for the gar-
ments image with stain defect is shown in the above
table. The proposed work achieves a high accuracy
value of 95.85%, and the BPN method provides a low
accuracy value of 83.33%. The dye spot values are
also shown in the above table.

Table 3
PERFORMANCE COMPARISON TABLE OF PROPOSED AND CONVENTIONAL METHODS

Classes Wavelet transform AlexNet Improved GAN Modified CNN Proposed
Sensitivity 93.33 90 88.89 84.84 92.5
Specificity 92.85 89.58 96.22 94.12 93.7
Precision 90.32 91.52 96.48 94.73 97.23

Recall 91.2 87.75 90.68 91 93.5
F1-score 89 90 92 91 94
Accuracy 90.16 89.91 92.82 93.56 97.3
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Table 4

CLASSIFICATION RESULTS OF GARMENT DEFECTS
Types of effects Accuracy Sensitivity Specificity Precision Recall F1-score
Defect free 97.33 78.94 98.73 95.85 92 83
Soil stain 95.85 83 98.15 91.32 91.7 91.5
Oil stain 91.32 91.5 98.20 92.2 90.8 92
Double end 92.2 92 98.73 90 98.20 83
Snarls 90 91.7 98.15 92.16 92 98.73
Miss 92.16 90.8 98.73 83 91.7 98.15
Horizontal stripes 93.33 98.20 98.15 91.5 98.73 98.20
Lumpy 94.85 98.73 83 92 98.15 98.73
Dye spot 94.32 98.15 91.5 91.7 93.33 98.15
Fall out 90.2 98.20 92 90.8 94.85 98.73
Hairiness 96 98.73 91.7 98.20 94.32 92
Tiny hole 97.16 98.15 90.8 83 93.33 91.7
Table 5 CONCLUSIONS
PERFORMANCE COMPARISON TABLE The |nt<.all.|gent inspection method for |dent|fy|ng and
OF PROPOSED AND CONVENTIONAL WORK FOR categorizing garment defects was created and intro-
THE IMAGE WITH NO DEFECT, HOLE DEFECT duced in the current study. For the automatic inspec-
AND STAIN DEFECT tion of apparel products, the method was primarily
Defects Methods Accuracy used and proposed in the textile industry. It was
BPN 333 err?ployed. to make up. for the shgrtcommgs of man'u-
— al inspection in detecting flaws with accuracy, consis-
Modified Elman neural network 84.85 tency, and efficiency. As a result of worker exhaustion
No defect VGG 90.32 or ennui, inspection results were frequently unreli-
CNN 91.2 able, ambiguous, and prejudiced. To categorise gar-
Proposed 97.33 ment flaws in the apparel business, a CFPNet model
BPN 82.33 and DBN neural network were presented in this
, Modified Elman neural network 84.85 study. A CLAHE with an enhancement approach was
ngfzgtle VGG 92.32 first introduced. A Segmented Approach A faulty pic-
CNN 91.2 ture was created using CFPNet, and the collected
Proposed 97.16 photos were then input into a DBN classifier to carry
BPN 83.33 out recognition operations. 12 different types of fabric
odified Elman neural network 89.85 defects can be categorized, including holes, exces-
Stain VGG 90.32 sive margins, stains, cracks, poor stitch balancing,
defect CNN 912 needle breaks, ink stains, tears, drop stitches, broken
ends, defect-free, and soil content images. The sug-
Proposed 95.85 gested method obtains a 95.85% stain defect detec-
BPN 83 . .
— tion rate, a 97.33% defect-free garment recognition
Modified Elman neural network 87.6 rate, and a 97.16% hole defect recognition rate. The
Dye spot VGG 85.2 outcomes of the experiment demonstrate the viability
CNN 89.7 and applicability of the strategy established in this
Proposed 94.32 study.
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